-This is the antithesis of Samsung and its "throw everything and see what sticks" business plan, as well as Google's Moto X hobby that will crank out far fewer phones over the next month than Apple took preorders for in Yellow iPhone 5c's yesterday.
-Apple's sales volumes are so vast, and its profits are so fatty, that even on the bleeding edge of Apple's sales chart, the advanced A7 is guaranteed tremendous economies of scale. That is a remarkable business.
-And the interesting part isn't that Apple thought up ideas that nobody else was smart enough to "innovate," because that's not what occured here. The reality was that Apple arrived at delivering a production ARMv8 chip first because it uniquely had the resources to pull off such an engineering effort, it uniquely had the need and desire to pull it off, and it had the business plan in hand to confidently pull a return on this vast investment. Nobody else does. Android serves in the same economy tier that its predecessor, Java Mobile on Linux, did. Windows Phone is a low volume curiosity product for eccentrics. BlackBerry is a dinosaur trying to evolve its way out of the tar pit. Outside of Apple, everyone else is struggling to sell to the mainstream at a minor profit.
-Check out Google Trend's mapping of interest in ARMv8 (below). It's been talked about over the last year, but typically in the context of servers, not mobile devices. Interest spiked in conjunction with Apple's release of the A7, despite the fact that Apple hasn't even explicitly named ARMv8 as the "modern instruction set" the A7 will use.
-It turns out that while the tech media spent most of 2013 complaining that Apple "wasn't innovating," Apple was secretly developing its new Mac Pro supercomputer, perfecting its Authentech-based Touch ID technology that the industry has been flummoxed to copy, completing iOS 7 (while Google took a Kit Kat break with Android Key Lime Pie) and OS X Mavericks (while Microsoft fiddled as Windows 8 burned), while also bringing an entirely new 64-bit mobile architecture into production ahead of the world's leading chip designers and foundries (which didn't see a pressing need to move to 64-bit and lacked Apple's experience in doing so), and, as nearly a side project, spending billions to build out a series of new iCloud data centers. On top of all this, it was also financing the construction of a multibillion dollar new chip foundry with TSMC capable of producing advanced new 20nm components. The move to a 20nm process is a vastly expensive and incredibly complex new technological frontier, one that caused NVIDIA's CEO Jen-Hsun Huang topublicly question whether the move even made financial sense just last year.
-One problem Apple doesn't have is a lack of resources, particularly overseas where it has over $90 billion flying in a holding pattern. Few companies have TSMC's chip fab technology, and few companies have Apple's resources to fund such technological endeavors.
-Brian Klug and Anand Shimpi from Anandtech expressed surprise in their reporting of Apple's event, and if you can impress them ("OpenGL ES 3.0 support in iOS!!This is nuts. Wow I seriously can't believe the 64-bit move!" the site blogged) you're clearly on the frontier of technology.
-While billed as an 8-core chip, Samsung's "Exynos 5 Octa" only uses four cores at once, following ARM's "big.LITTLE" design concept associated with its Cortex-A15 core design, which pairs four low-power, efficient Cortex-A7 cores with four high-power Cortex-A15 cores....nstead, Apple released its A6 chip (below) last year using custom designed "Swift" cores that incorporated some elements of the Cortex-A15 tech portfolio but were largely based upon existing Cortex-A9 designs. Qualcomm similarly avoided implementing a pure Cortex-A15 design in its own "Krait" custom ARM CPU core used in its recent Snapdragon chips.
-According to figures from Strategy Analytics, Samsung's entire non-phone computing device business earned a tenth of Apple's profits outside of the iPhone.
-Suppli came out with a new report indicating (above) that Samsung's GS4 equipped with its own Exynos 5 Octa was substantially more expensive than the North American version of the same phone shipping with a Qualcomm Snapdragon (and both were estimated to be more expensive than iPhone 5). So much for having a home field advantage as a component manufacturer.
-t was actually noteworthy that Samsung decided to use the same PowerVR GPU as Apple's A6 in its Exynos 5 for the Galaxy S4 rather than ARM's Mali, although its North American GS4's are powered by Qualcomm's Snapdragon 600 with Adreno graphics.
Of course, you wouldn't need to know any of this unless you were in the unfortunate position of trying to develop Android games, and needed to test your software against three different vendors' GPU architectures just to work on one vendor's recent high-end smartphone. But what all this really highlights is that the tech media's Samsung-fed understanding that Apple is devoid of innovation and just blindly using components from other, wiser companies, while Samsung is both a brilliant innovator and an accomplished designer and manufacturer of components -- is all actually quite backward.
-Samsung has clearly failed to make the correct engineering and design decisions....Imagine the field day tech punditry would have if Apple built even a low end phone with a Qualcomm Snapdragon. Now imagine if Apple floated out its iPhone 5s in some markets with something other than the A7 due to cost constraints. Yet when Samsung, a chip fabricator, did this, it was seriously praised for seeking out new sources of components, and nobody cried foul over the marketing blitz for a chip that was left out of the device in the country where it was launched.Outside of backwards land, the Exynos 5 Octa was such an expensive failure that Samsung couldn't handle eating its own dog food within the most competitive market of Apple's home continent.
-Apple not only developed its custom Swift A6 design last year, but also developed, in parallel, an implementation of ARMv8 (apparently Cortex-A50 series) technology that others had only experimented with in the lab. It wasn't that Apple knew something that the rest of the industry did not, but simply that Apple had a broader vision for selling high end technology that nobody else saw as immediately possible.
-Take note, tech journalists: that's a much better definition of innovation than pooping out new SKUs every month.